Optimal Parallel Wavelet ECG Signal Processing

Ervin Domazet
Ss. Cyril and Methodius University
Faculty of Computer Science and Engineering
1000, Skopje, Macedonia
Email: ervin_domazet@hotmail.com

Abstract—Real time detection of heart abnormalities can pre-
vent serious health problems. This requires real time processing
of ECG data by a corresponding web service. Considering the
case of wearable devices to collect ECG data, the signal is actually
contaminated by noise. Noise can seriously change the ECG signal
and occur in the form of a baseline drift representing various
physical movements and breathing. Unless it is removed, correct
analysis on ECG data is impossible. Being characterized by very
low frequencies, its elimination can not be efficiently realized
by simple DSP filters, such as Finite Response Filters (FIR) or
Infinite Response Filters (IIR).

Wavelet Transformation is a promising technique to eliminate
the noise with very low frequencies, and its digital version
(DWT) is capable of efficient removing the ECG baseline drift.
In this paper, we set a research question to investigate the
dependence between the nodes in the DWT implementation
(and therefore to their corresponding threads) and the available
number of cores that can execute the code. This analysis leads to
valuable conclusions that will allow construction of even better
optimizations. Results indicate that proper allocation of cores can
yield faster code.

Index Terms—Wavelet Transformation, ECG, Heart Signal,
Parallelization, OpenMP

I. INTRODUCTION

Information and Communication Technologies (ICT) is an
emerging field, which stimulates innovative solutions in the
domain of healthcare. In this paper, we analyze solutions
based on wearable Electrocardiogram (ECG) sensors that
continuously stream data to the server and huge data quantities
are being processed by a corresponding web service [1].

It is scientifically proven that the detection of heart ab-
normalities can prevent serious health problems [2], [3]. This
requires real time processing of ECG data by a corresponding
web service. Considering huge data quantities coming in a
certain velocity, optimization is inevitable.

The pre-processing phase in processing of ECG signals
is mainly responsible to eliminate the noise stemming from
different sources and DSP filters are primary used tools.

Noise can seriously change the ECG signal and occur
in the form of a baseline drift representing various physi-
cal movements and breathing. Unless the noise is removed,
correct analysis on ECG data is impossible. This noise is
characterized by very low frequencies, and its elimination
can not be efficiently realized by simple DSP filters, such as
Finite Response Filters (FIR) or Infinite Response Filters (IIR).
Wavelet Transformation is a promising technique to eliminate

Marjan Gusev
Ss. Cyril and Methodius University
Faculty of Computer Science and Engineering
1000, Skopje, Macedonia
Email: marjan.gushev @ finki.ukim.mk

the noise with very low frequencies, and its digital version
(DWT) is capable of efficient catching and removing the ECG
baseline drift. Additionally, DWT is also used in Feature Space
Reduction phase in order to locate the QRS characteristics of
the ECG signal.

Milcheski and Gusev [4] propose a new version of DWT
implementation using a circular buffer and obtain a significant
speedup. In our previous study [5], we have optimized this
implementation of the DWT algorithm by optimizing the Ini-
tialization part for additional 20% faster code using OpenMP.
However, the problem of synchronization between different
iterations prevents even higher speedup.

In this paper, we set a research question to investigate the
dependence between the nodes in the DWT implementation
(and therefore to their corresponding threads) and the available
number of cores that can execute the code. This analysis
leads to valuable conclusions that will allow construction
of even better optimizations. We give a detailed analysis
and also realize experimental testing to analyze the practical
implementations. Evaluation of the results are compared with
the results of previously parallel code.

The paper is organized as follows, Section II presents
background information and shortly the previous study. In
Section III, the optimization approaches are listed. Section IV
gives the details about conducted tests. Evaluation and discus-
sion regarding the results are presented in Section V. Related
work is given in Section VI and, lastly, in Section VII, the
paper is concluded with future considerations.

II. BACKGROUND

ECG holds vital information related to the cardiovascular
condition of a living person. This section gives a general
overview of ECG signal processing and briefly explains
Wavelet Transformation and its importance in ECG feature
reduction and extraction.

A. ECG signal processing

Methodologies for processing and analyzing ECG signal
consist of three stages: data pre-processing, feature space
reduction and feature extraction [3].

DSP filters are generally used in the data pre-processing
phase. Low pass filters are usually used to eliminate the noise
with high frequencies, such as the electrical switching and
radio waves. High pass filters eliminate the noise initiated

(500 Hz ECG Signal>
I

72

[o0125H | [125-250Hz | L=1

[o0-625Hz | [625-125Hz | L=2
"""""""""""""""""""""" ':l"'""""""""":
31.25-62.5 Hz Elimmation L=3 !

L=8
e e e o S Baseline Drift . U
; w ;]0'49 -0.98 Hz Elimination L=9 J

Fig. 1. Wavelet decomposition tree. High pass filter is used to
eliminate baseline drift and low pass filter for noise elimina-
tion.

by physical movement and breathing, mainly interpreted as
baseline drift elimination. Bandpass filters, as a combination of
high pass and low pass filters are considered as effective DSP
tools for noise elimination. Although, DSP filters eliminate the
noise to a certain extent, they provide a relatively clear signal,
which can be further processed for feature extraction.

In the feature space reduction phase, the signal is analyzed
by detecting the peaks of QRS complexes and locating the
peaks of individual P and T waves. A QRS complex is used as
the starting point for further analysis, and, therefore, it’s exact
detection is of a high importance [6]. For example, a Wavelet
transformation can be used for baseline drift elimination in
this stage. In the final phase, QRS features are extracted, and
the ECG signal precisely characterized.

The quality of extracted features, is directly dependent on
the correct rate of eliminated baseline drift. Thus, focusing on
this step is vital.

Digital filtering is essential for both the first two steps of the
ECG signal processing. Wavelet Transformation is an efficient
method used in both the elimination of baseline drift and QRS
complex extraction.

B. Baseline drift and noise removal of an ECG signal

An important fact about Wavelet Transform is that the num-
ber of iterations needed to decompose the signal into smaller
frequency bands is higher for smaller bands. In the case of
ECG, a smaller number of iterations (and therefore time) are
needed to analyze higher frequencies, and the opposite for
lower frequencies. To eliminate the baseline drift one needs
to deal with very low frequency bands and filter the lower
frequency components.

An example of an implementation of a DWT algorithm that
eliminates the baseline drift of an ECG signal is given next.

In case of a ECG sensor functioning at a S00Hz sampling
frequency, it is known that spectrum of a real valued signal is
symmetric [7]. Since the symmetric part is the mirror image
of the first half, it does not provide additional information.

wavelet levels

1 2 3 4 5 6 7 8 9

suone.Idnn

Fig. 2. Simultaneous Execution of nodes on the Processing
phase of DWT code.

Thus, working on a 250 Hz frequency is enough to extract
data from the signal.

DWT is based on decomposition, and reconstruction of the
signal [4]. In each step, a signal is decomposed into high
pass and low pass coefficients, from which approximation and
detail coefficients are calculated. In order to eliminate the
baseline drift of 0.5 Hz, it requires at least L. = 9 wavelet
levels. Noise can also be canceled with an additional L = 3
wavelet levels and a delay of 6. Details are presented on our
previous work [5].

C. Discrete Wavelet Transform Analysis

Our analysis on the previous study [5], showed that DWT
algorithm contains two bottlenecks, exposed in the Initializa-
tion and the Processing phase.

Observation is that the former phase does not include data
dependencies between iterations. This was a vital information
for pure parallelization. Though, the latter phase is highly
dependent, preventing direct parallelization. This is presented
in Fig. 2 where data dependence is vizualised as A — B, with
the meaning B depends on A.

D. Previous Parallel Algorithm

Our previous parallel algorithm [5] was based on optimizing
both of the bottlenecks. The Initialization phase was paral-
lelized by a straightforward approach. Nevertheless, high data

dependency on the Processing phase required re-arrangement
on the nodes for a concurrent computation.

Computation waves can flow with 45 degrees to axes where
each wave contains independent computations and can be
executed simultaneously at a given time stamp. This ensures
that previous nodes (found on the left) are already calculated.
Due to this pipelined structure, the first output will be ready
after L iterations, where L is the number of wavelet levels.

The proposed implementation requires that each block of
independent nodes to be synchronized between iterations.
However, this is a costly operation and prevents theoretical
speedup of L, when executed on L cores.

Next section gives further optimization strategies, in order
to achieve the best efficiency through the parallel algorithm.

III. OPTIMIZATION APPROACHES

The methodology for testing the parallel algorithm on the
previous study [5] was based on executing both the bottlenecks
on the same number of cores.

The algorithmic and storage complexity of the DWT is
O(Lx2%), making it nearly hard to increase the Wavelet levels.

One interesting approach is to keep the core numbers for
Initialization phase high. This would increase the efficiency,
simply because the data independent iterations.

In the Processing phase the maximum available nodes that
can concurrently be processed is restricted to the number of
wavelet levels. Thus, increasing the core numbers, will only
increase the number of idle cores. However, executing this
region with less number of cores can decrease the burden of
barrier synchronization.

Our previous work did not address the effect of filter length.
Theoretically, increasing the filter length will directly increase
the percentage of processing compared to the percentage
required to synchronize iterations.

Moreover, OpenMP provides built in optimization strategies
[8]. Previous study did not considered using them. It would be
interesting to test their effect on the barrier synchronization.

IV. TESTING METHODOLOGY

Let the response time required to process the parallel
algorithm be denoted by T}, and the response time required
to process the optimized parallel algorithm with p cores, be
denoted by T,,. Then, the speedup is defined as the ratio of
the execution times by (1).

Ty
Sop = T 1)

op
The proposed optimization approaches are tested on an
Amazon C3 c3.8xlarge instance. It consists of a high-
frequency Intel Xeon E5-2680 v2 (Ivy Bridge) Processor with
32 cores, 60GB of memory. OpenMP library is used for testing
the proposed optimizations.
The following optimisation approaches will be tested:
OA1: Using more core numbers for Initialization phase.
0OA2: Using less core numbers for Processing phase.
OA3: Increasing the filter length.

0OA4: Using compiler optimizations.

OAS: Combined Effect.

On the previous study, we observed the effect of input size
is negligible as the wavelet levels increase. Due to this, the
input size will be fixated to 10.000 sample length ECG signal.
Throughout the tests, wavelet levels vary from 3 up to 24, with
incremental steps of 1 level.

On the test environment, the maximum number of available
cores is 32. Considering this, the test configuration is presented
in Table 1.

TABLE 1. Test Environment Setup

Optimization Description of The
Approach Testing Methodology
OA1l Core numbers from 2 to 30, incremental steps of 2
OA2 Core numbers from 2 to 10, incremental steps of 2
OA3 Daubechies filters of length 4, 8, 16 , 32 and 64
OA4 OpenMP’s built-in O1, O2 and O3 optimizations
OA5 Combination of the most efficient approaches

Each test case was tested ten times and an average value of
measured times was calculated and used for further processing.
Moreover, functional verification was conducted to verify the
functional characteristics of the executions obtain identical
results.

V. EVALUATUATION AND DISCUSSION

Figure 3 presents the speedup values when running the
parallelized /[nitialization phase with fixed number of cores.
These values are calculated by comparing with the case when
running on core numbers equal to Wavelet levels. It is observed
that, from wavelet levels ranging from 3 to 10, the fixed 2 core
execution is faster by an average speedup of 12%. Similar
speedup is obtained between wavelet levels 11 and 20, when
running on 4 cores. On wavelet levels higher than 20, the
average speedup is calculated to be 14%, though on executions
with fix 10 cores.

These results indicate that, running the initialization phase
on fixed number of cores yield faster code. It is observed that,
as the wavelet increase, using higher number of cores becomes
efficient. The speedup which is obtained is nearly 12%.

Next, on the Figure 4, speedup values which correspond
to running parallelized Processing phase with fixed number of
cores. Again, values are calculated by comparing with the case
when running on core numbers equal to Wavelet levels. It is
observed that this optimization approach is effective especially
when the Wavelet level is greater than 13. Fix core 2 case
yields the best results. This was expected, since it decreases the
negative effect of barrier synchronization. On wavelet levels
higher than 13, the average speedup is calculated to be 10%,
though on executions with fix 2 cores.

Figure 6 presents the effect of filter length. Filter length has
an effect only on the Processing phase, thus test is conducted
on the complete parallelization case. As expected, increasing
the filter length has a direct effect on the speedup of the
parallelization. This is primarily due to the fact that, as filter
length increase, the effect of synchronization becomes less

1.2 =&—Fix 2 - Core

X /“ — S ~@—Fix 4 - Core
l’; ,#/A\\ /"";‘_*

I
Il

1.1 4 —— N = — “ \ LD . — ~#—Fix 6 - Core
TSERTE o S N = ——
{ 2 Ny 29 Eaad ey e e =>¢=Fix 8 - Core
3 ‘—4A‘- 7 PN —— \::’ = -

'// 0= DN ;,";V’A'w;.;(\' ‘ : ===Fix 10 - Core

=@—Fix 12 - Core

0.9
a X ==t==Fix 14 - Core
3
E 0.8 - «===Fix 16 - Core
& ~———Fix 18 - Core

==fe=Fix 24 - Core

o W =&—Fix 20 - Core
0.6 ///7\ / /// ~—Fix 22 - Core
/] \N_N"

~==Fix 26 - Core

0.5 N ¥
~=t=Fix 28 - Core

Fix 30 - Core

0.4 T

Wavelet Levels

Fig. 3. Speedup of the paralleled Initialization phase with fixed number of cores compared to an implementation with cores
equal to the Wavelet levels.

~@i—Fix 2 - Core

«=fe=Fix 4 - Core
=>¢=Fix 6 - Core

==f=Fix 8 - Core

=@®—Fix 10 - Core

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Wavelet Levels

Fig. 4. Speedup of the paralleled Processing phase with fixed number of cores compared to an implementation with cores
equal to the Wavelet levels.

= Step
s Optimization
°
o ~—Processing
& Optimization
=== Complete

Parallelization

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Wavelet Levels

Fig. 5. Speedup of combining the best optimisation approaches compared to an implementation with cores equal to Wavelet
levels without optimisations.

0.16

0.14 -

0.12

0.10 -

0.08 — =] =

Average Speedup

0.06

0.04

4 8 16 32 64
Daubechies Filter Length

Fig. 6. Average speedup of the paralleled Processing phase
with different filter lengths.

important. On filters of length 64, the completely parallel
algorithm performs 2 times faster.

The effect of compiler optimizations is shown in Figure 7.
Results indicate that the build-in O3 optimization, fastens the
completely parallel algorithm by at least 15%.

Figure 5 shows the combined effect of the optimization
approaches, where the code is tested on the best configuration,
i.e. fix 2 cores, with 64-length Daubechies filter and built-in
compiler optimization flag Q3. Observation is that on Wavelet
levels less than 10, the Step Optimization algorithm has an
average of 4 speedup. What is more interesting, when the
Wavelet levels are greater than 10, the optimizations yield a
speedup of 4 Complete Parallelization, in a scalable nature.

Observation is that proposed optimisation approaches can
yield faster codes when run on proper configurations.

VI. RELATED WORK

Previously, we have focused on parallelizing DSP filters on
Maxeler dataflow cores [9] and NVIDIA CUDA platform [10],
[11]. In both cases, we achieved faster codes with a scalability
depending on the number of used cores.

Pan and Tompkins, [12], have presented a real time algo-
rithm for ECG QRS detection. Their algorithm considers the
slope, amplitude and with information, and adaptively adjusts
to the thresholds and parameters. It uses integer arithmetic in
order to operate without requiring much computation power.
There are no execution times presented, though their analysis
is concentrated in the quality, where their correctness rate 99.3
percent.

An efficient implementation of DWT’s in Field Pro-
grammable Gate Array(FBGA) devices [13]. They have op-
timised the power consumption and throughput. Additionally,
a three level DWT algorithm with 4 Daubechies length filter
is presented.

Milcheski and Gusev [4] have proposed an efficient DWT
implementation using a circular buffers. They obtained signif-
icant speedups of at least 15. This is further improved in our
previous study [5] by 20%. These papers serve as a basis for
the current paper.

=4=01 =li=02 03

3 6 9 12 15 18 21 24
Wavelet Levels

Fig. 7. Speedup of the parallel algorithm with using built-in
OpenMP optimization flags.

Several studies in literature addressed the delineation con-
cept of ECG signal. Alfaouri and Daqrouq [14] present al-
gorithms which produces better quality output, however no
consideration is made for the performance.

Kayhan and Ercelebi [15], proposed lifting scheme based
DWT algorithm for ECG denoising. Tests were conducted with
an 360Hz ECG signal with 216.000 samples. Their algorithm
provided fast executions where on Daubechies filter of 8§,
0.141s execution times were provided.

An interesting approach was reported by Rajmic and Vlach
[16], where a segmented wavelet transform analysis was
presented. This approach is very attractive in the real-time
case, however the authors have only published the concept.

VII. CONCLUSIONS

This work contributes OpenMP optimization for the baseline
drift elimination of ECG heart signals. Totally five optimiza-
tion approaches were proposed. Results indicate that, each of
them can yield faster codes on proper configuration.

Approaches OAI and OA2 yields speedup values of at
least 10%. On the other hand, results showed that as filter
length increases, the proposed parallel algorithm’s efficiency
increases. To be more specific, the OA3 approach speeds up
the parallel code by a factor of 2, when the filter length is
increased from 4 to 64.

The effect of compiler’s built-in optimization strategies were
tested. The outcome of this OA4 approach was that the O3 flag
performs best, with at least a 15% performance gain.

Lastly the combined effect was tested as the proposed OAS
approach. Observation was that the combined effect yields a
speedup of 4.

As a future work, we plan to further optimize the DWT by
considering real-time segmented wavelet transform analysis
concept. Additionally, it would be interesting to port the code
to dataflow engine and test the parallel DWT algorithm.

REFERENCES

[1] M. Gusev, A. Stojmenski, and I. Chorbev, “Challenges for development
of an ecg m-health solution,” Journal of Emerging Research and
Solutions in ICT, vol. 1, no. 2, pp. 25-38, 2016.

[2]

[3]
[4]

[5]

[6]

[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

P. Laguna, N. V. Thakor, P. Caminal, R. Jane, H.-R. Yoon, A. Bayés de
Luna, V. Marti, and J. Guindo, “New algorithm for qt interval analysis
in 24-hour holter ecg: performance and applications,” Medical and
Biological Engineering and Computing, vol. 28, no. 1, pp. 67-73, 1990.
T. S. Lugovaya, “Biometric human identification based on ECG,” 2005.
A. Milchevski and M. Guseyv, “Improved pipelined wavelet implemen-
tation for filtering ECG signals,” University Sts Cyril and Methodius,
Faculty of Computer Sciences and Engineering, Tech. Rep. 27/2016,
2016.

E. Domazet and M. Gusev, “Parallelization of digital wavelet transfor-
mation of ecg signals,” in MIPRO, 2017 Proceedings of the 40th Jubilee
International Convention. Opatija, Croatia, in press: IEEE, 2017.

P. Mehta and M. Kumari, “Qrs complex detection of ECG signal
using wavelet transform,” International Journal of Applied Engineering
Research, vol. 7, no. 11, pp. 1889-1893, 2012.

R. Polikar, “The wavelet tutorial,” 1996.

Intel, “Quick-reference guide to optimization with intel compilers
version 12, 2010, https://software.intel.com/sites/default/files/compiler_
qrgl12.pdf.

E. Domazet, M. Gusev, and S. Ristov, “Dataflow DSP filter for ECG sig-
nals,” in 13th International Conference on Informatics and Information
Technologies, in press, Bitola, Macedonia, 2016.

E. Domazet, M. Gusev, and S. Ristov, “CUDA DSP filter for ECG
signals,” in 6th International Conference on Applied Internet and
Information Technologies, in press, Bitola, Macedonia, 2016.

E. Domazet, M. Gusev, and S. Ristov, “Optimizing high-performance
CUDA DSP filter for ECG signals,” in 27th DAAAM International
Symposium. in press, Mostar, Bosnia and Herzegovina: DAAAM
International Vienna, 2016.

J. Pan and W. J. Tompkins, “A real-time qrs detection algorithm,” IEEE
transactions on biomedical engineering, no. 3, pp. 230-236, 1985.

D. Shah and C. Vithlani, “Efficient implementations of discrete wavelet
transforms using fpgas,” International Journal of Advances in Engineer-
ing & Technology, vol. 1, no. 4, pp. 100-111, 2011.

M. Alfaouri and K. Daqrouq, “ECG signal denoising by wavelet
transform thresholding,” American Journal of applied sciences, vol. 5,
no. 3, pp. 276-281, 2008.

S. Kayhan and E. Ercelebi, “Ecg denoising on bivariate shrinkage func-
tion exploiting interscale dependency of wavelet coefficients,” TURKISH
JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCI-
ENCES, vol. 19, no. 3, pp. 495-511, 2011.

P. Rajmic and J. Vlach, “Real-time audio processing via segmented
wavelet transform,” in Proc. of the 10th Int. Conference on Digital Audio
Effects (DAFx-07), Bordeaux, France. Citeseer, 2007.

